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FOREWORD

This report was prepared by Goodyear Aerospace Corporation (GAC),

Akron, Ohio, for the National Aeronautics and Space Administration, Langley

Research Center (NASA-LRC), Hampton, Virginia, under Contract No.

NASI-7359. The purpose of the report is to summarize the design, analysis,

fabrication, and test performed by Goodyear Aerospace in this initial program

for developing attached inflatable supersonic decelerators.

The program was a group effort headed by Mr. F. R. Nebiker, manager

of the Recovery Systems Engineering Department, assisted by Mr. A. C.

Aebischer, section head; Mr. R. R. Barton, project engineer; Mr. W. A.

Barr, configuration analysis; Mr. R. E. Nissel, materials and fabrication

techniques; Mr. J. E. Houmard, structural analysis; Mr. I. M. Jaremenko,

aerodynamics analysis; Mr. W. W. Sowa, inflation analysis; Mr. B. E. Sahli,

tests and instrumentation; Mr. D. L. Mansfield, packaging techniques; and

Mr. W. P. Stricker, mass properties.

Mr. H. L. Bohon and Mr. M. M. Mikulas, Jr. of the Structures Research

Division of NASA-LRC served as contract monitors. Goodyear Aerospace

acknowledges the cooperation and support by NASA personnel.

The contractor's report number is GER-13680. The manuscript was

submitted in February 1968 for approval as a NASA contractor report.
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DEVELOPMENT OF ATTACHED INFLATABLE DECELERATORS FOR

SUPERSONIC APPLICATION

By R. Reed Barton

Goodyear Aerospace Corporation

SUMMARY

An attached inflatable decelerator is considered for augmenting needed

drag of a capsule during Mars entry. The inflatable afterbody,configured as

a variation from a tucked-back BALLUTE,_:-" is packaged within a 120-deg

conical aeroshell for deployment at Mach 3.0 and at a dynamic pressure of

125 psf. Outer attachment of the expandable afterbody is made to the hard-

body aeroshell profile, and inner attachment is made to a tubular support for

wind-tunnel mounting.

The model was designed, fabricated, and development tested and is rec-

ommended for wind-tunnel testing to prove workability of the concept.

This report discusses design conditions, requirements, documentation,

materials selection, development tests, and conclusions.

INT RODU CTION

Size constraint of the Saturn V booster and weight-restricting low density

atmosphere at Mars entry pointed to the need for deploying additional drag

area. An Attached Inflatable Decelerator (AID) system was designed, fabri-

cated, and static tested in preparation for wind-tunnel testing an expandable

lightweight concept to demonstrate its workability.

The design of the afterbody decelerator is based on meeting the contractual
design conditions for operation and is intended to he optimum within the limita-

tions of the state of the art. The aeroshell and support hardware is designed
to meet the contractual stress requirements specified for operation in the wind

tunnel of the Arnold Engineering Development Center (AEDC).

The described requirements for meeting the design of AID are the configu-

ration selection together with aerodynamic considerations and structural analy-

ses. Configuration analysis and materials selection for design and the results
of developmental tests for static qualification also are presented.

TM, Goodyear Aerospace Corporation, Akron, Ohio



DESIGN CONDITIONS

Recognized conditions for designing the AID system were those applicable

to the optimally designed afterbody decelerator and those applicable to a

boilerplate-designed hard structure consisting of the aeroshell and mounting

support (see Figure l).

The system design includes a 120-deg aeroshell with an attached inflatable

envelope fashioned after the tucked-back BALLUTE to provide the least-weight

practical decelerator for the performance specified. The aerodynamic and

structural requirements to meet free-flight loading conditions were as follows:

I. Maximum diameter projected (including fence),

Dp = 2Rp, 5 ft.

(CDA)d _ (CDRp2) d

2. Deployed frontal area ratio, (CDA)e (CDrb2) e , 4.5

3. Dynamic pressure (q), 125 psf

4. Deployment Mach number (M), 3.0

5. Maximum temperature (T), 350 deg F

co

(NOMINAL)

,qp : 30.0 IN. (NOMINAL) 60 BEG

/
/

/
/

/
/

!
I

I
I

/
I

I
I

/
II

I TTACHED
INFLATABLE

I
DECELERATOR

I

AEROSHE LL

Figure 1 - Aerodynamic Configuration for Attached Inflatable Decelerator
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The aeroshell and support were not optimized structurally and were to

have a lenient safety factor to meet AEDC wind-tunnel design and strength

requirements specified in AEDCDocument QCP-000-21, dated March 1967.

Basis for designing the hard structure also included the wind-tunnel test sched-

ule and conditions established at the AEDC pretest conference, 7 July 1967.

Table I lists the conditions of operation by changed angle of attack, Mach num-

ber, and dynamic pressure.

TABLE I - AEDC (PWT) 16S TEST SCHEDULE

Conditions b

q Tt

Event a (psf) M (F)

i. Startup, undeployed 120 3.0 180

2. Angle of attack 120 3. 0 180

3. Deployment 120 3. 0 180

4. Angle of attack 120 3.0 180

5. Mach number reduction 120 2.5 180

6. Angle of attack 120 2. 5 180

7. Integrity test 380 2.5 Minimum

8. Shutdown 0 0 . .

(deg)

0

2, 5, 10

0

2, 5, 10

0

2,5,10

0

0

Data b

Pi, (Pi - Poo )' PB,

D, T], T2, camera

Same as 1 and My, N

Same as I

Same as 2

Same as 1

Same as 2

Same as ]

Same as 1

a24 pps (color), all events covered; 200 pps (color), events 1, 2, 4, 5, 6, and 8

covered; and 400 pps (color), events 3 and 7 covered.

b
Pi' envelope internal pressure; Tt, stagnation temperature; TI, T2, internal

temperatures; _, angle of attack; (Pi - Pco), pressure envelope differential;

PB' base pressure; D, drag; My, pitching moment; and N, normal force.

DESIGN REQUIREMENTS

Aerodynamic Considerations

Introduction. - The decelerater design requires aerodynamic inputs to

determine the shape and loading for the structural analysis and to contribute

to the overall design of the AID system. The following aerodynamic investi-

gation is based on the listed design conditions together with the specified

general configuration.

3



Flow environment. - Compared with conventional trailing decelerators,

the integrally attached afterbody is not deployed and operated in the near wake

of the aeroshell. The flow environment is the initial free-stream condition,

and the local flow pattern is determined by the aerosheU shape (see Figure Z).

The aeroshell is a I20-deg blunted cone, and the flow discontinuity over it

forms a detached wide bow shock wave. At the aeroshell base, before decel-

erator deployment, the local flow expands and separates to form its own wake.

As a result, a lip shock of some strength is formed. Representative Schlieren

pictures indicate that the region between the front edge of the expansion fan

and the lip shock is expanding and that the lip shock is the terminal ray of ex-

pansion. The decelerator deploying from the base of the aeroshell overcomes

the base flow structure; as a result, the new configuration with a rounded

shoulder evolves. This makes the flow separation pattern more gradual; thus,

the strength of a lip shock decreases. Adequate internal pressure should

counteract any adverse base flow effects during and after the deployment. The

deployed decelerator is expected to be inside the spheroid bounded by the main

bow shock and not interfered with. Hence, the flow structure around the close-

coupled system is favorable for obtaining the optimal drag coefficient.

Flow control around the decelerator and increase in effective drag area

are vital for the intended free-flight performance of the system. These objec-

tives are met by the burble fence, which ensures a constant point flow separa-

tion and provides additional projected area. The pressure buildup associated

with the separated flow ahead of the fence provides additional drag force by

local pressure integration (Reference i). The location and the size of a fence

MAIN BOW SHOCK

EX PA NSION FAN _

LIP SHOCK

Figure z _ Flow Field About Aeroshell
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are compromised by configuration, flow structure, and weight and package-

ability. Based on these factors and experience, the height of the burble fence

was established as five percent of the profile diameter extending beyond the

projection of a half profile. Under compressible flow loading, it assumes the

shape shown in Appendix D.

Reduction from an interim consideration of a conventional 10-percent

fence was prompted by weight and package volume saving. To provide compa-

rable aerodynamic drag efficiency anticipated from the 10-percent fence, the

leading edge of the five-percent fence was moved forward until the fence quar-

ter point corresponded with the decelerator equator to induce an earlier flow

separation.

Pressure distribution. The pressure distribution over the aeroshell

decelerator was determined for several afterbody profiles using the modified

Newtonian impact theory. The theory is used to obtain the stagnation point

pressure on the aeroshell and the pressure distribution on the afterbody up to

a point preceding the burble fence at which separation is estimated to occur.

The modified Newtonian pressure distribution then was corrected as affected

by flow separation at the burble fence. Experimental results indicate that the

pressure increases in the vicinity of the burble fence and reaches a local maxi-

mum at the top of the fence. This local maximum may be up to three times

the magnitude of the local minimum pressure preceding the fence.

The equation used to compute a pressure distribution is given by modified

Newtonian theory as:

2
C = C sin @

P Pmax

where

PL - Poo Ip qoo )
C - - = 19.84 psf

P qoo co 0.7 M 2
oo

C
Prnax

Po Pco

qoo

6) = local surface angle measured from

straight flow

or

pL- 1 + sin 2 6)

Poo

Pressure distributions were prepared accordingly for shapes in the sev-

eral steps of iteration to isotensoid. The iterated shapes and corresponding



pressure distributions are compared by studying Figures 3 and 4 under the

shape summary.

Inflation considerations. - The purpose of this design for wind-tunnel

testing was to show that the AID concept was deployable and could serve as an

efficient decelerator. Hence, full and fast deployment to the basic shape was

desired and could be provided by the liquid vaporization method. The decel-
erator was outfitted with four conventional ram-air inlets located aty/R= 0.293

to maintain the inside pressure level necessary for shape retention. This

location ahead of the burble fence places the inlets in the flow with minimum

interference facilitating the continuing pressure by ram air.

The magnitude of the internal pressure coefficient generated by the inlets

is not a function of their size, within large limits, assuming a nonporous

fabric. Accordingly, the inlet configuration qualified in the Gemini BALLUTE

application was chosen to pressurize the decelerator. By using this qualified

inlet, one imponderable of the wind-tunnel test was eliminated.

A Cp. of two is expected to be produced by a Gemini-type inlet located
1

immediately forward of the burble fence, as it was in the PILIME and Gemini

configurations considered without a separated forebody (see Figure 49 of Ref-

erence 2).

Configuration Selection

System geometry. - The support, located in the central volume of the

aeroshell, is the counterpart of an entry payload. Its general configuration

is arbitrary and solely depends on a design that properly supports the model

on the AEDC 16S wind-tunnel sting.

The inflatable afterbody decelerator is designed for least weight in the

shape analysis by applying the concept of isotensoid design as given in Refer-

ence 3. A complete profile less the burble fence is defined by joining two

isotensoid curves (a front and back half curve) having common boundary con-

ditions at their juncture, which is the maximum diameter. Because of the

shape and the design pressure distribution, the fabric and meridian stresses

are constant.

For the specified design conditions, the drag coefficient for an isotensoid

profile resulting from the application of a reasonable pressure distribution

(modified Newtonian) was C D = 1.2, which was considerably higher than that
assumed by using a nominal size decelerator and aeroshell (60- and 21-in.

diameters) for the desired frontal area relationship. By adopting a 24-in.
aeroshell, the desired frontal area ratio of 4.5 was closely approximated:

(CDAId (CDRpZ)d l.Z13012
= = -4.7

(CDA)e (CDrJ)e 1'6 (12)Z

where



Rp projected radius of decelerator deployed

r b base radius of aeroshell or projected radius at undeployed entry

Shape summary. - Corresponding fixed coordinates and coordinate re-

lationships were established as ground rule bases for pursuing a parametric

analysis of applicable and refined isotensoid shapes (Reference 3) to satisfy

the configurational restraints. A limited analysis, intended to aid in selecting

the model shape, roughly compared W/C D with the outer attachment angle (_),

a shape-effecting parameter (see Appendix A). Table II gives established

geometrical relationships.

Refinement was attained by a step-by-step iteration of the isotensoid

shape for Cpi = 2.0 and for the estimated pressure distribution for that shape.

Each successive profile was developed by computer and programmed in

FORTRAN from the applicable equations (see Appendix B).

TABLE II - GEOMETRICAL RELATIONSHIPS

Term

Rp

R

h b

d
g

rb

Subscript o

Subscript i

Subscript e

Definition

Total radius of decelerator

(with 5 percent fence)

Radius of decelerator pro-

file at equator

1(. 2Rp ) RpI+0.05+0.05 -i.i

Height of burble fence

(five percent)

h b = Rp - R = 0.05 (ZR)

Depth of lobe at fence

Base radius of the aero-

shell to outer attachment

Outer attachment location (_0)

Inner attachment location

Equator of profile

Center of burble fence

Original attachment loca-

tion (_) at rb' = I0. 5 in.
I

Dimension

(in.)

Coordnates

x/R y/a

30.0 1.10

27.3 1.00

2.7

1.0

12.0 0.44

0.44 (y/R)o

0. 1 3 (y/R)o

I. 00 (y/R)e

1. O0 (y/R)e

+0.11

+0.05

0.38 0

7



Pressure distribution was estimated successively for each step-computed

shape by developing a faired profile and incorporating values determined from

the modified Newtonian equations given under aerodynamic considerations.

The result was a good geometrical and structural decelerator configura-

tion that had an outer attachment angle (6) of 23.6 deg (cosecant _ = 2.5),

whereas a very marginal result was achieved from 6 = 19.5 deg (cosecant 6 = 3).

Depending upon small changes in the estimation of pressure distribution, plots

of the 19.5-deg profile passing through the established attachment points had

negative or minute circumferential membrane forces that were not compatible
with maintaining a stable shape.

Figures 3 and 4 show the profiles of shape and pressure distribution for

the two angles. Although the plot in Figure 4 does not pass directly through

the inner attachment point, it misses by only an inch and is representative for

comparing characteristics given in Table iT/. This table shows that, for _ =

19.5 deg, an impractical number (n) of nearby semicircular lobes are re-

quired to be compatible with the circumferential membrane stress coefficient

(Fr). A related discussion is given in Appendix A.

TABLE ILI- ISOTENSOID PROFILE PARAM_ETERS

!

(deg)

26.2

¢
(deg) kf k r

19.5 0.55 0.485

23.6 0. 52 0.440

(Y/R) e

0.55

0.65

y/R

(max)

0.81

0.94

a 2

orp CD

0. 512 I. 19

0. 470 I. 14

(CDA) d

(CDA) e F r

4.65 0. O04

4.45 0. O89

n

90

48

Figure5 shows the lobing geometry for the profile resulting from _ = 23.6

deg. The 1.0-in. depth of required lobing (dg) reduces the burble fence effec-
tivity to approximately four percent.

Shape and pressure distribution profiles for _ = 30 deg also were ex-

amined but were rejected because of general shape; the value of (x/R)min
was only 0.059 for the plot passing through the inner attachment point,
(x/R) i = 0.13.

The true outer attachment angle, for rb = 12 in., is _' = 26.2 deg.

General shape analysis. - In applying the isotensoid concept to the AID,

a computer program was written for the IBM 360 that determines the isoten-

sold profile shape along with the associated stress parameters, drag coeffi-
cient, meridian length, and surface area of revolution. Appendix B describes

the governing equations and the computer program.

Three values of 6 (19.5, 23.6, and 30.0 deg at the edge of the 21-in.

diameter aeroshell) were considered in selecting the configuration shown in

i
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Figure 3. The profile cross section was plotted by the off-line Calcomp plot-

ter using the cartesian coordinates at 344 points (see Appendix B).

Development of the shape profile for each attachment angle (_) resulted

from an iteration of shape and pressure distribution. The shape resulting

from an assumed pressure distribution was evaluated for a new estimate of

pressure distribution. The estimated profile of pressure distribution shown

as the dashed curve in Figure 3 resulted from the shape profile in Figure 3.

Using this distribution as a computer input resulted in a shape profile that

agreed closely with the shape shown. The small differences were considered

well within the accuracy of the aerodynamic theory used to estimate pressure

input.

The calculated drag coefficient, based on the frontal area that includes

the nominal five percent burble fence and the conical aeroshell, is

C D = 1.14 (1)

This value was obtained by the computer numerical integration of the pres-

sure distribution of Figure 3 as applied to the shape of Figure 3. The value of

PL/Poo = 5.15 that occurs at the forward burble fence attachment was taken as

occurring immediately in front of the equator (x/R) e = 1.00, and the constant

pressure of PL/Poo = 0.4 was taken rear of the equator. Since the indicated

pressure distribution over the front of the burble fence is approximately linear,

the drag on the fence was determined by taking an average value over the

frontal projected annular area (from Figure 3) and by subtracting the constant

pL/Poo = 0.4 pressure over the rear projected annular area. The burble

fence drag, therefore, is given by

Db = 15.15 + 6.75 0 4) I(l I)2 - (I 0)2 ] Poo TrR2
, , .

= I. 166 Poo;rR 2 (2)

This burble fence drag was applied as a concentrated line load at the

equator and then was used in conjunction with the integrated drag over the

body of the decelerator along with the drag on the aeroshell to obtain the drag

coefficient of Equation (i). The drag coefficient of the aeroshell was taken

as C D = 1.6; a corresponding constant pressure of pL/Poo = I0. 1 (from
e

Figure 3) was used.

The cartesian coordinates were used as inputs into a second computer

program that determined the area of the decelerator cross section and the

centroid of the area to determine the enclosed volume. Figure 6 gives this

area and cross section by

VB/R 3 = 27r(_/R)A(_-_)

= z_.(0.55)(0.584)= z.018 (3)

11
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This second program also calculated the properties of the line that en-

closes the cross section. These line section properties (see Figure 6) were

required for the buckling analysis.

All these geometric properties must be qualified as follows:

1. The burble fence is not included.

2, The profile shape corresponds to the meridians so that

the membrane spanning the meridians will lobe outside

this profile.

, All computer results are based on the total shape of

Figures 3 and 6 above the plane y/R = 0, originally

established for outer attachment at the base of the

nominal 21-in. diameter aeroshell (x/R = 0.380),

where 6 = 23.6 deg.

Based on aerodynamic and mechanical design considerations, these

boundary conditions were changed to those indicated in Figure 3 so that

(1) for the inner attachment, (x/R)i = 0. 126 and (y/R)i = 0. 137 and (2) for

the outer attachment,(x/R)o = 0.440 and (y/R)o = 0.027 .

The new angle (_') at the outer attachment is slightly greater than 23.6

deg. By numerical differentiation based on the coordinates, the new angle
is approximately

12
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_' = tan -I {0.27776 - 0.024929

-i
= tan (0. 49140)

= 26. 2 deg

The following values are used along with the preceding drag coefficients

and nondimensional geometric properties to obtain the values tabulated in

Figure 3.

1. R = 27. 3 in. (shape summary)

2. q = 125 psf (design conditions)

3. Poo = 19.84 psf = 0.1378 psi (aerodynamic considera-
tions)

Then:

Total drag, D = qCDA

= (125)(1.14)(--_)(5) 2

= 2800 ib

= I. 166 PcoTrR 2

= (i.166)(0.1378)_(27.3) 2

= 376 ib

Burble fence drag, D b

The volume, surface area, and meridian length of the canopy (without

burble fence and neglecting lobing) having the origin shown in Figure 6 are

V B = 23.9 cuft

A 49.0 sq ft
s

_rn = 2. 654 R =

The meridian length,

estimated for the torus sector of Figure 6 as shown on page 14.

= 2.018 R 3 = (2.018)(27.3) 3 = 41,200 cuin.

= 9.439 R 2 = (9.439)(27. 3)2 = 7050 sq in. =

(2. 654)(27.3) = 72.5 in. = 6.04 ft

surface area, and volume of the burble fence are

13
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/

_b

I
._i.--h b = 0.1R--_ l

= 2.73 IN.

R = 27.3 IN.

_b = Z.73\I--FG-+

= 5.49 + 4.29 = 9.78 in. = 0.815 ft

The line centroid, _ (see Sketchl), is given by

Zhb ZlZ.73)
Yl =_=g g

= 1. 735 in.

Z.73 sin 115 deg (180) = 1.233 in.
Y2 = I15_

Therefore, the surface area of the fence can be written as

Ab = Z_[(Z7.3+ i.735>I4.zg>+ IZ7.3+ I.Z33>(5.491]

= 1770 sqin = IZ.3 sqft

The cross-sectional area (see Sketch I) is given by

Tr (Z 73) 2 5.86 sqin.
A 1 =_ • =

/ii_\
A2 --_3--_)(4)(5.86)= 7.5 sq in.

The area centroid, y (see Sketch l),is given by

-- 2 Z

Yl = -3 _l = -_(i. 735) = I. 157 in.

= 2
YZ = "3 (1.233) = 0.822 in.

14
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Therefore the volume of burble fence can be written as

vb = 2_I<z73+ i i_71<_s61+ 1273+o.sz21(v,sl]

= 2380 cu in. = 1.38 cu ft

I

rb " _ !
!

ho I
ha

I

The aeroshell net volume (Sketch 2) is the enclosed volume of the coni-

cal aeroshell minus that of the cylindrical sting support. For r b' = 10.5 in. ,
r c = 3.25 in., h a = 6.06 in., and h c = 4. 18 in.,

V = _ r.'2h- -_r 2h = 702- 139 = 563 cu in. = 0.33 cu ft
a 3 D a c c

The total surface area, A = A s + A b = 49 + 12 = 61 sq ft. The total

enclosed volume, V = V B + V b + V a = 23.9 + 1.4 + 0.3 = 25.6 cu ft.

Detailed shape analysis. - The isotensoid design concept as developed in

Reference 3 is based upon equal principal membrane forces in the fabric be-

tween meridians (fabric stress, N6 = N O = f) that are constant over the entire

surface of the decelerator. The tension in each meridian (Tin) also is con-

stant over its entire length. The same stress conditions hold except that the

constant stresses and meridian tensions in the front half are higher than those

of the rear half due to the introduction of the concentrated burble fence drag

load at the equator (see Appendix B). The stresses and meridian tensions

are normalized per Reference 3 on the basis of the equatorial radius of the

BALLUTE body and the constant gage pressure over the rear half of the BAL-

LUTE. Then,

Meridian tension, T = k _ {4)
m n

Fabric stress, f = F _ (5)

15



Let the subscripts f and r denote the front and rear halves of the BAL-

LUTE, respectively. The corresponding stress parameters of Equations (4)

and (5), as given by the computer program for the conditions of Figure 3, are

kf - 0.5199 Ff = 0. 1043

k = 0.4421 F = 0.08866
r r

(6)

The above analysis considers the BALLUTE as a surface of revolution,

which would be valid if a meridian spacing on the order of the fabric thread

spacing could be achieved. However, even the largest practical number of

meridians (n of Equation 4) that can be achieved using current materials and

construction methods will not yield a sufficiently small spacing. The resulting

surface is not one of revolution but has the scalloped effect observed in para-

chutes. The fabricated geometry of these lobes is controlled as closely as

practical by properly tailoring the gore patterns. The basis of this technique
is described below.

First, consider an area on the surface of the theoretical body of revolu-

tion in Figure 7. The dashed area of Figure 7 is magnified and is considered

as the dashed plane surface in Figure 8. The solid lines of Figure 8 show the
lobed fabric where the lob cross section will be considered as a circular arc.

For isotensoid conditions to be valid in Figure 8,

N_ = N O = f = F _ (5a)

N O

MERIDIANS

_AXIS OF REVOLUTION

Figure 7 - Surface of Revolution with Meridians

16



/

/

Figure 8 - Surface Element with Lobing

Now, consider the lobe cross section between two meridians and the fab-

ric surface element that is made up of a bias, two-thread set fabric in Fig-

ures 9A and 9B, respectively. The required lobe and fabric geometry now

can be found from the following equations based on Figures 7, 8 and 9.

Let fb denote the actual fabric stress in the direction of the bias threads

of Figure 9A. By statics in the _ and 0 directions,

2fb sin Z ,¢ = f_ (7)

Zfb cos 2 7 = f@ (8)

Therefore,

f_ _ Z
--- tan 7
f@

(9)

By the geometry and statics of Figure 9A,

r sin _ = 7fx/n (I0)
g

N@ = f@ cos
(II)

f8 = pr (12)g

17



..,-- _/n _ ¢

(A) (B)

and

tions (5),

Figure 9 - Lobe Cross Section and Fabric Element

By statics between meridians in the _ direction of Figure 8,

sin;3= f#r ;3g g

N_ = f¢ sin ,8 (13)

Equations (5) through (13) represent an 8 by 8 set of equations. By Equa-

(9), (Ii), and (13),

_sin _ costan _ = ,8 ( 1 4)

By Equations (5), (I0), (Ii), and (12),

tan _ = Zy(x/R) (15)
nF

From Equation (i0),

r

__ = 7r
R n sin ,8 (x/R) (16)

18
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The half-arc length and the lobe depth are (see Figure

---_= ¢_
R

9A)

(17)

--_ = (1 - cos t3)
R (18)

The actual fabric stress is given from Equations (5),

fb = F P_4R ( sin _ Xsin z 7/

Or let

(7), and (13) as

(19)

2fb _ F sin _ (20)

Fb - pR 2_3 sin Z y

Since Equation (14) states that the bias thread set angle is a function of

the central lobe angle, the set angle should vary point by point along the

meridian. This is not yet practical from the fabrication viewpoint. Further-

more, the constant 45-deg bias angle construction, as now used, only satis-

fied Equation (14) for the limit, _ _ 0, which is compatible with the body of

revolution where the meridian spacing approaches the bias thread spacing.

The difference of 7 values and the 45-deg construction can be considered as

an indicator of an upper limit of the deflection of the BALLUTE from the de-

sign shape. This upper limit is quite conservative since the threads are not

free to rack or pantograph due to the restraints of (I) thread friction, (2) the

fabric coating, and (3) boundary conditions.

The nonextensible, meridional, and circumferential strains due to thread

racking from 45 deg to the _/ angle, respectively, can be given by

f_ = %/_sin _ - 1 (21)

Ee = _-cos_ - 1 (zz)

The corresponding deformed radius is simply

x'/R = x/R (I + £8) (23)

Table IV gives the numerical values based on the preceding equations.

Here, the stress coefficient, F, of Equation (5) assumes the values of Equa-

tion (6). Also, n = 48 is used in Equation (i0) to satisfy the criterion that

the lobe depth at the equator does not exceed one inch (see Figure 5).

19



TABLE IV - LOBE GEOM_ETRY, RADIAL GROWTH, AND

FABRIC STRESSES

X/R

0.4 l(_0

0. 5102

0.6O 32

0. 7148

0. 8264

0.9349

0. 9607

0. 9862

0. 9978

1.00

1.00

0. 9933

0. 9608

0. 9194

0. 8389

O. 7670

O. 6850

8. 5885

3. 4787

3.3856

D. 3000

). 2377

3. 1928

3. 1730

). 1520

3. 1302

9. 1263

3. 1260

d
deg n_in

28 55

32 38

37 8

41 54

46 4

49 34

50 20

51 4

51 24

51 27

55 53

55 42

54 49

53 37

51 5

48 33

45 19

40 59

35 15

29 39

23 53

19 20

15 53

14 lq

12 39

I0 53

10 34

10 32

d //R
,u

O. 00743

O. 00978

O. O1326

0.01791

O. 02301

0. 02813

O. 02956

O. 03084

0. 03144

0.03154

0.03471

O. 03433

o. o3262

0.03040

O. 02624

r //R

g

0.05956

0.06193

0.06540

0.07006

0.07515

0.08044

0.08172

0.08299

0.08360

0.08370

0.07904

0.07866

0.07696

0.07473

0.07057

S /R

0.03006

0.03527

0.04239

0.05[23

0.06042

0.06959

0.07179

0.07397

0.07500

0.07516

O.O77O9

0.07647

0.07363

0.06993

0.06292

deg rain

42 29

40 44

38 6

36 48

36 21

34 57

35 4

36 26

(in./in. )

-0. 044

-0. 077

-0.127

-0. 152

-0.188

-0.160

0.02264

0.01871

0.01439

0.00996

0.00668

0.00415

0.00265

0.00176

0.00142

O.O6697

0.06304

0.05872

0.05430

0.05101

0.04850

0.04698

0.04610

0.04575

0.05675

0.04986

0.04200

0.03341

0.02640

0.02022

0.01585

0.01278

0.01143

0.01003

0.00857

0.00832

0.0082q

0.00110

0.00081

0,00077

0.00076

0.04544

0.04514

0.04510

0.04508

38 29

41 11

43 19

44 15

44 31

44 39

-0. 119

-0. 059

-0.029

-0.012

-0.009

-0.007

C o

(in./'in.)

0,043

F b

O. 1096

0.062 0.641 0.1140

0.113 0.921 0.1229

0.131 1.090 0.1273

0.139 1.135 0.1294

0.159 1.159 0.1144

0.158 l.lll 0.1145

0.138 0.954 0.1097

0.107 0.758 0.1029

0.064 0.509 0.0958

0.029 0.309 0.0914

0.013 0.196 0.0898

0.008 0.153 0.0894

0.005 0.127 0.0893
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Decelerator Stress Analysis

Summary. - Table V summarizes the calculated margins of safety and

their corresponding design factors. Although wind-tunnel conditions should

be considered for the decelerator model analysis, margins and factors also

are given for this same model as a flight-test unit. The purpose is to empha-

size that (1) the tunnel flow breakdown does not apply to flight considerations

and (2) a higher safety factor is used for the wind-tunnelmodel than for a

flight unit (2 versus 1.5). This accounts for reduction in material strength

due to creep at elevated temperature over a relatively long time (one-half

hour or more) that may occur during testing in a wind tunnel compared with

short-time flight loading.

TABLE V - MARGINS OF SAFETY AND DESIGN FACTORS

Item

Margins of safety

Design factors

Overload (flow breakdown)

Dynamic (flag snapping)

Temperature (350 deg F)

Seam efficiency

Ra c ki ng

Factor of safety

Composite design factor (S. F.)

Wind -tunnel

decelerator

Fabric

1.9

1.5

1.5

1.38

1.25

I.i

2.0

8.55

Meridians

0.80

1.5

1.5

1.33

1.0

1.0

2.0

6.0

Flight-test
decelerator

Fabric

4.8

1.0

1.5

1.38

1.25

l.l

1.5

4.27

Meridian. ¢

2.6

1.0

1.5

1.33

1.0

1.0

1.5

3.0

While minimum gage considerations govern the design, the margins in

Table V are necessarily high for the functioning model. Meridian tape rated

at 500 ib and coated fabric having a coated weight of 2.36 oz/sq yard and

rated at 80 Ib/in. were the light gage materials selected.

By a separate analysis, buckling of the pressurized structure was found
not to be critical.

Limit loads. - The following analysis serves as the basis for material
selection. The maximum fabric stress coefficient from Table IV occurs at

the equator and is

F b = 0. 1294 (24)
max

This stress is conservative since the corresponding h' angle is low.
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The maximum kf of Equation (6) along with F b of Equation (24) governs
max

the meridian and fabric selections, respectively. The corresponding limit

design values then are given by definition as follows.

From the design conditions section and as previously defined,

q = 125 psf

M = 3
(3O

T = 350 deg F

R = 27.3 in.

The reference pressure equals the internal pressure minus the constant

external pressure over the rear of the BALLUTE - that is,

P = Pi- Pr (25)

or in terms of the distributions of Figure I,

Pi PrP _

Pco Poo Pao

Pi

Poo

0.4 (26)

From the aerodynamic considerations section,

C
Pi q

Pi - Poo
- 2 (27)

Furthermore, from aerodynamics in this Mach number regime,

2
q = 0.7M oo Poo (28)

Then,

Pi - Poo
C =

2
Pi 0.7 M

oo Pco

and

Pi _ 0.7 Moo 2 + i = (0.7)(3) 2 (Z) + 1 : 13 6 (29)
Poo Cpi
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Substituting Equation (29) into Equation (26),

P - 13.6 - 0.4 = 13.2 (30)

Poo

where for q = 125 psf (from Equation 28),

125

= (0.7 _'_=J_vp19.84 psf = 0. 1378 psi (31)Poo

Therefore,

p = (13.2)(0.1378) = 1.82 psi (32)

Substituting the above values along with n = 48 into Equations (4) and (5)

gives the following limit loads and stresses:

T = (0.52) [I(1"82) rr (27.3)Z| | = 46 3 lb (33)
m [ 48 ] "

fb = (0. 1294) [(1.82)(27.3)J2 = 3.22 ib/in. (34)

Design factors. To convert these limit values to the required room

temperature ultimate strengths, design factors are applied that are composed

of the following considerations.

Overload factor, (F.S)o: This factor accounts for an increase in the
internal pressure over and_bove the design pressure. This may occur due
to the flow breakdown conditions in the AEDC 16S tunnel. Flow breakdown

can be accounted for by adding a pressure of 0.2 Pt to the frontal area. As-
suming the internal pressure can increase by the same amount, for Moo = 3

and q = 1Z5psf (Figure2.4 of Reference 4),Pt = 700 psf and 0.2 Pt = 140 psf.

The design internal pressure by Equations (29) and (31) is

Pi = (13.6)(19.8) = 270 psf

Therefore, the overload factor becomes

140
(F.S)o = I + 7Z7g = 1.5 (35)

Dynamic factor, (F.S.)D: This factor accounts for loads resulting from
high dynamic pressures and-free-stream velocities acting on relatively large

areas of lightweight fabric during inflation. The high-speed cameras on the

Aerodynamic Deployable Decelerator Performance Evaluation Program
('ADDPEP) vehTcle provide-d considerable data for in-specting thi_ partially

inflated condition (Reference 2).
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Observed whippingaction (referred to as flag snapping) can result in split
envelope gores unless a dynamic factor is applied to the steady-state limit
loads or unless methods are used to reduce these dynamics loads. The flag
snapping ceases as soon as a "ball" of air is in the BALLUTE; therefore, the
dynamic effects are diminished by inducing this "ball" of air as rapidly as
possible. Since the ram-air process is rather slow, inflation aids such as
liquid vaporization at high altitutes have been used for initial inflation.

Experience has indicated that for plain-back trailing BALLUTEs, which

fully inflate in the neighborhood of one-half second when deployed at super-

sonic speeds, the following empirical dynamic factor should be used:

(F.S) D = 1.5 (36)

Due to lack of further knowledge, this factor will be used although it is
suspected to be conservative primarily because the canopy is attached to the

aeroshell to alleviate flag snapping.

As a sidelight, an empirical formula was developed to account for the

flagging of subsonically deployed trailing BALLUTEs that are entirely ram-
air inflated:

-(]_)
Ftu q R

This ultimate strength criterion accounts for all considerations except for

possible elevated temperatures that generally do not occur until after the

BALLUTE is fully inflated when flagging has ceased. Although the equation
does not apply to Moo = 3 conditions, the fabric can carry such a load even

assuming that the design temperature of 350 deg F occurs during the flagging
condition. The margin of safety would be four percent as shown below:

u

Substituting Equation (37) along with the values for q and R from the aero-

dynamics and design conditions sections, respectively,

Ftu = (i. 38)(_)_14-_][125_(27.3)= 76.4 Ib/in.

The actual ultimate fabric strength given in the materials selection sec-
tion is 80 lb/in. The margin of safety is, therefore,

80
(M.S)f = _ -1 = 0.04

Temperature factors (F.S.)T: The design temperature of 350 deg F can
be treated as a factor. From Figures Z and 4 of Reference 5, the strengths
of Viton-coated Nomex cloth and of the Nomex webbing at 350 deg F are 72.4

percent and 75 percent of the room temperature strengths, respectively. The

corresponding temperature factors are
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l

Fabric, (F.S.)T - 0.724 = 1.38 (37)

i
Meridians, (F.S.)T - 0.7_- = 1.33 (38)

Seam efficiency (F.S.)s: Seam efficiencies of 80 percent for the fabric

and 100 percent for the meridians can be expected based on data obtained from

other programs. These efficiencies will be validated by seam tests described

under the development tests section. The factors then are

I - 1 25 (39)
Fabric, (F.S.)s - 0.8

Meridians, (F.S.)s = 1 (40)

Racking (F.S.)R: Seam leakage is more peculiar to BALLUTEs than to

parachutes. Some cloths rack under loads considerably below the ultimate

seam strength. Racking occurs when the cloth yarns running in one direction

are pulled locally by the sewing threads into a bunch, thus leaving small local

voids in the cloth. Although this does not necessarily degrade the fabric

strength, a factor of from 1.0 to 1.2 should be applied to obtain a required

porosity. Therefore, the following factor, applied to the fabric only, will be
used:

(F.S.)R = I. 1 (41)

Basic safety factor, (F.S.): A safety factor of two is used with limit

stresses to obtain ultimate stresses in the analysis of the fabric and of the

meridians.

Design factors, (S.F.): Table VI gives the composite design factors

based on Equations (35) through (41).

TABLE VI - COMPOSITE DESIGN FACTORS

Factors Fabric Meridians

Overload (F. S. )O

Dynamic (F. S. )D

Temperature (F. S. )T

Seam efficiency (F. S. )S

Racking (F. S. )R

Safety factor F.S.

Design factor S.F.

1.5

1.5

1.38

1.25

I.i

2.0

8.55

1.5

1.5

1.33

1.0

1.0

2.0

6.0
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The required ultimate room temperature strengths are given by applying

these design factors to the stresses of Equations {33) and (34),

T = . .(S.F.) m Tm rn
u

= (6)(46.3) = 278 Ib

Ftu = (S.F.)f fb = {8.55) {3. Z2) = 27.6 lh/in.

The actual ultimate strengths given in the materials selection section are

500 Ib and 80 ib/in, for the meridians and fabric, respectively. Therefore,

the margins of safety are

500
(M.S.)m 278 1 = 0.80

80
..(M.S.)f = _- 1 = 1.9

Buckling. - Even with positive (tensile)stresses existing throughout the

inflatable structure, a buckling phenomenon could exist; this has been recog-

nized by investigators of pressurized structures {References 6, 7, and 8).

However, this possibility was discounted when an analysis of in the plane of

the ring and out of the plane of the ring buckling capacities of the configura-

tion found safety factor values of i0.4 and 6. i, respectively, based on design

limit external pressure. The analysis is not detailed in this report.

Hard Structure Stress Analysis

Table VIE summarizes the hard structure stress analysis. The values

provide a comparison of computed safety factors with the factors specified in

AEDC Document QCP-000-21.

The values of Table Vll are based on loading condition seven of Table I,

which is the governing condition for the stress analysis of the hard structure

shown in Figure 10. The analysis is not detailed in this report.

DESIGN DOCUMENTATION

General

Design analysis of the selected configuration culminated in the preparation

of drawings for the fabrication of an AID (see Appendix D).

Figure ii shows the dimensional control of the attachments; Figures 12

through 15 show assembly fabrication stages of the model. The components

of the AID model assembly are factory replaceable as parts or as assembly

fabrications identified in the following Goodyear Aerospace drawings.
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6 10A000-001 - I01,

6 iOA000-002-102,

610A000-101 -i,

610A000- I02-i01,

610A000-I03- I ,

610A000-103-3 or 11,

610A000- 103- 101,

610A000- 103- 103,

6 10A000-104-101,

Atlas C176-5,

Atlas C106,

CEC Type 4-316,

model assembly, AID system

decelerator assembly

aeroshell

support assembly

cutter clamp

inner clamp

reservoir assembly

model-balance pin

outer clamp assembly

reservoir cutter

daisy chain cutter (2)

pressure transducer

TABLE VII - SAFETY FACTORS FOR HARD STRUCTURE

Component
and

type of load

Aeroshell

Membrane tension

Support

Bearing from pin load

Outer clamp

Shear load on screw

Bearing on clamp

Bearing on aeroshell

Inner clamp

Shear load on section

Bearing on clamp

Mounting pin

Shear load on pin

Steady-state
Condition

Computed

safety factor

on yield a

7.18

Computed

safety factor
on ultimate b

13.47

Flow break-

down conditior

Computed

safety factor

on yield c

5.54

3.48

8.33

4.25

3. 04

5.20

5. 02

4.55

5.81

9.80

7.99

5.70

6.10

8.36

5.45

2.22

6.87

3.51

2.50

4.30

4.15

2.90

aSpecified safety factor equals 3.

bspecified safety factor equals 4.

CSpecified safety factor equals 2.
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OUTER CLAMP {DRAWING 610A000-104-101)

I)ETAII,

MODEL-BALANCE (MOUNTING) __/
PiN, DRAWING 610A000-103-103

{REFERENCE 9)

/
/

SUPPORT

(DRAWING 610A000-102o101 |

INTERNAL BALANCE,

AEDC 6-4°4°3.0 M

(REFERENCE 4)

INNER CLAMP

(DRAWING 610A000-103-3

OR 610A000-103-11)

A.

Figure l O - Hard Structure
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Figure ii - Dimensional Control of Attachments
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Figure 12 - Aeroshell Cone and Outer Clamp

Figure 13 - Support Sleeve and Installed Cable

3O



Figure 14 - Decelerator Afterbody, Cone, and Clamp

Figure 15 - Sensors and Operating Components
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Tables VIII and IX give the actual weights and calculated centers of

gravity for the packaged and deployed configurations of two assembled models.

TABLE VIII - ACTUAL WEIGHT AND CENTER OF GRAVITY,

AID NO. 1

Ref datum apex
of aeroshell

Hard structure

Tube support

Aeroshell

Inner clamp

Outer clamp

Pressure transducer and clamp

Reservoir

Vaporizing fluid

Daisy chain cutter (2)

Reservoir cutter

Cabling

Tubing

Inflatable afte rbody

Inlet assembly (4)

Canopyles s fence

Burble fence

Total

Center of gravity a

Weight

(ib)

(91.

71.

12.

1.

3.

O.

O.

O.

O.

O.

O.

O.

(4.

O.

3.38

0.23

95.20

(in.)

Deployed

o2) (9.

Ol ii.

78 4.

50 9.

8O 6.

03 3.

47 2.

38 18.

06 II.

47 4.

36 13.

16 12.

18) (18.

57 16.

18.

23.

10.

93)

03

7O

24

96

80

70

92

35

60

13

3O

87)

90

92

O0

31

Packaged

(9.87)

ii. 03

4.70

9.24

6.96

3.80

2.70

2.70

ii.35

4.60

13. 13

ig. 30

(6.44)

6.44

9.72

aln packaged to deployed configuration for AID No. I, center of gravity shifted

0.59 in. (10.31 - 9.72) with hard structure and 12.43 in. (18.87 - 6.44)
without hard structure.
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TABLE IX - ACTUAL WEIGHT AND CENTER OF GRAVITY,

AID NO. 2

-0.49 in. !

Ref datum apex
of aeroshell

Weight

(lb)

Hard structure (88.

Tube support 68.

Aeroshell 12.

Inner clamp I.

Outer clamp 3.

Pressure transducer and clamp 0.

Reservoir

Vaporizing fluid

Daisy chain cutter (Z)

Reservoir cutter

Cabling

Tubing

Inflatable afte rbody

Inlet assembly (4)

Canopyles s fence

Burble fence

Total

82)

44

78

50

80

03

0.47

0.75

O.O6

0.47

0.36

0.16

(4. 18)

0.57

3.38

0.23

93.00

Center of gravity a

(in.

Deployed

(9.94)

11.03

4.70

9.2.4

6.96

3.80

Z.70

18.92

II.35

4.60

13. 13

12.30

(18.87)

16.90 ]
18.92

23. O0 ]

i0.33

)

Packaged

(9.81)

11.03

4.70

9.24

6.96

3.80

2.70

2.70

11.35

4.60

13. 13

12.30

(6.44)

6.44

9.66

aln packaged to deployed configuration for AID No. 2, center of gravity shifted

0.67 in. (I0.33 - 9.66) with hard structure and 12.43 in. (18.87 - 6.44)

without hard structure.

Control of Attachment Points

Design and fabrication of a small-scale inflatable decelerator model with
features similar to one of actual size is relatively difficult. The hard struc-

ture design purposely is made simple, with a small number of parts and
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machining operations minimizing the buildup of tolerances. Dimensional

control by a judicious assignment of tolerances compatible with shop methods

holds the relationship of the outer attachment to the inner attachment to within

0.06 in. This variance, resulting from practical machining tolerances and

after-assembly adjustment, is shown in the following analysis.

For the separation of attachment points in the shape profile,

and S represent the distance of separation in the two directions,
Y

S
X _

R (x/a)o- (x/a)i

where S
x

S = 27.3 (0. 440 - 0. 126)
X

= 8.56 in.

S rb
Y = (y/R)o - (y/a)i -R 4

S = Z7.3 (0. 137 0.027) = 12
y 4

= 3. 00 in.

By referring to the drawing dimensions and tolerances, letter-coded in

Figure 11, the allowable variance from separation of the attachment points
was computed from the tolerances given in Table X,

Axial adjustment of the inner clamp prior to match drilling eliminates
values for E and F resulting in a corrected variance of 0.06 in. maximum for S .

Y

TABLE X - POSSIBLE VARIANCE FROM ESTABLISHED

RELATIONSHIP OF ATTACHMENTS

Sx variance Sy variance

Coded tolerance a Value (in.) Coded tolerance a Value (in.)

A

A'

B

B'

Total

O. 005

O. 030

O. 005

O. 005

O. 045

C

C'

D

D'

E

E'

F

F'

Total

Corrected total

O. 010

O. 005

0.01

O. 005

(0.07)

O. 030

(0.02)

Negligible

0.15

O. 06

aTolerances denote, by the prime superscript (') are for surface eccentricity
of the revolving shape.
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MATERIALS SELECTION

Hard Structure

The completed aeroshell drawing (see Appendix D) calls for aluminum

alloy sheet to be spun-form to final shape after an intermediate stabilizing

heat treatment. A rigid, close-fitting, low-carbon steel tube serves as the

transitional support between the sting-mounted internal balance and the aero-

shell. A hardened steel mounting pin is the load-carrying element between

the support and AEDC balance.

The decelerator is secured to the hard structure by clamping the canopy

end bands. Outer attachment to the aeroshell is achieved by a 6061-T6 alumi-

num alloy clamping ring; inner attachment to the tube support is achieved by

steel clamping sectors.

Approved locking devices selected for retaining machine screw fasteners

are Elastic Stop lock spline nuts in the outer clamping ring for attaching to

the aeroshell cone; Helicoil lock inserts in the support tube for fastening the

aeroshell, inner clamp sectors, daisy chain cutters, and pressure transducer;

and regular Elastic Stop nuts for mounting the reservoir tube and reservoir
cutter to the aeroshell.

Decelerator

The low material strengths required for designing and fabricating a small-

scale decelerator model are difficult to obtain in optimum sizes as off-the-

shelf items; however, every consideration was given to scale components with-

in practical reason.

The selection of Nomex cloth coated with Viton provides a minimum-thick-

ness, high-strength material representative of the fabric system to be chosen

for free-flight conditions at 350 deg F. Since the basic cloth has an airflow
porosity rate of 19 ft/min when subjected to a conventional 0.5-in. water

pressure, the leakage rate was reduced by calendering the cloth and applying

0.5 oz/sq yd of Viton elastomer. This lightweight coating does not restrict

the cloth lobing capability nor does it lock in the yarns, which would result

in lower seam efficiency. After coating, the porosity flow rate was only 0.0Z

ft/min.

The meridians are MIL-T-5038 Type V tape but are specially woven of

Nomex instead of nylon. To simulate the relative meridian size better, the

500-1b tape was folded to i/4-in, wide for attachment to the fabric. The gore

panel seam is a simple one-inch wide lap seam and uses two rows of Federal

Specification 751 Type 301 lockstitching and one row of single-throw Type 304

zig-zag stitching. The zig-zag stitch was used to secure the edge of the fabric

that is exposed to the airstream. The main gore seam used to attach adjacent

gores also is a simple lap seam, is 5/8-in. wide, and uses three rows of

single-throw Type 304 zig-zag stitching. Burble fence seams are all Type 304

zig-zag to allow for lobing. To reinforce the gore around the inlet, a Good-

year Aerospace-developed 300-1b braided Nomex cord was sewn in place.
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The inlet seam is similar to the main gore seam. An expected seam of 80 per-

cent was validated by seam tests reported under the development tests section.

The physical characteristics of coated Goodyear Aerospace fabric GX601-

V0302. with values of warp/fill differentiation, are given in Table XI.

TABLE XI - PHYSICAL CHARACTERISTICS OF

GOODYEAR AEROSPACE-COATED FABRIC

Char acte ristic Value

Tensile strength, lb/in. (rated at 80)

Tear strength (lb/in.)

Elongation (%)

Thickness (in.)

Weight (oz/sq yd)

Thread count per inch

Porosity limit (cu ft/sq ft-min)

96/s3
9. o16.8

27.9/29.0

0.0037

2.36

80177
0.02 at 0.5 inch of water

DEVELOPMENT TESTS

Reservoir Acceptance Pressure Test

For acceptance testing, each reservoir was subjected to better than the

expected wind-tunnel test conditions of static pressure, stagnation temperature,
and span time. Acceptable units held the measured amount of water without loss.

Deliverable, filled reservoirs of final design were fabricated of soft butyl

tubing, were pressure constrained by nylon fabric sleeves, and were exposed
for 2-1/4 hr to a bell jar vacuum pressure of 1.3 to 2.9 psfa at 178 to 180 deg F.

Vaporizing fluid consisted of equal weights of water and methyl alcohol. The

test is validated by the weight data in Table XII. The minute weight loss was

from evaporation of outside moisture from the nylon sleeve.

TABLE XII - RESERVOIR WEIGHT DATA

AID

numb e r

Reservoir

fluid weight

Ounces

6

IZ

Grams

170. 1

340.2

Re s ervoir

weight

(grams)

Filled

reservoir

weight
before test

(grams)

387.6

545.5

Filled

reservoir

weight
after test

(grams)

386.8

544.3
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Tensile Tests of Nomex Fabrications

The following Nomex material fabrications comprising the decelerator can-

opy were tensile tested to validate their structural integrity. Unit fabric and

seam tests were performed by the raveled strip method on an Instron machine
in accordance with Federal Specification CCC-T-191. Break test values of

all test specimens are given for each material fabrication; their average is

compared with the rated value assured by the manufacturer.

i. Canopy fabric, GAC GX601V0302:

Specimen

lwarp direction I

Ultimate load

{lb/in. I

1 96.0

2 96.5

3 96.0

4 96.0

5 95.5

Average 96.0

Rated 80

Specimen

{fill direction}

Ultimate load

Ilb/in,. /

1 92.0

2 80.0

3 83.0

4 81.0

5 80.0

Average 83.0

Rat ed 80

2. Main gore seam

Specimen

(warp direction}

Ultimate load

/lb/in. t

1 77.7

2 76.2

3 73.3

4 73.2

5 78.6

Average 75.8

Rated (80% of 80} 64

3. Rear burble fence seam

Specimen

(warp direction I

Ultimate load

Ilb/in.I

i 81.2

2 80.0
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,

Specimen

(warp direction)

3

4

5

Averate

Rated

Ultimate load

.,(lb/in.)

84.0

82.0

81.5

81.7

64

Forward burble fence seam

Specimen

(warp direction)

1

2

3

4

5

Average
Rated

Ultimate load

(lb/in. )

83.0

84.0

81.9

8O.O

81.1

82.0

64

Inlet seam

Specimen

lwarp direction)

1

2

3

4

5

Average
Rated

Ultimate load

(lb/in. 1

79.1

75.0

77.0

70. I

7Z. 3

74.8

64

Meridian tape, MIL-T-5038 Type V of Nomex

Ultimate load

Specimen (ib)

1 560.0

2 555.0

3 552.0

Average 555.6

Rated 500

7. Inlet erection cord, GAC braided weave

Ultimate load

Specimen (Ib)

1 325

Z 302



.

Specimen

3

Average
Rated

Sewing thread,

Specimen

1

2

3

4

5

Average
Rated

9. Sewing thread,

Specimen

1

2

3

4

5

Average
Rated

I0. Sewing thread,

Specimen

1

2

3

4

5

Average
Rated

Size E

Size F

Size FF

Ultimate load

Ob) __

357

3OO

Ultimate load

lib)

7.6

7.6

7.7

7.5

7.9

7

Ultimate load

{lb)

10 0

9 5
10 1

9 7

9 5

9 76

9

Ultimate load

{lb)

119

12 5

13 0

IZ 9

12 0

12 5

115

Fabric Permeability Test

Random samples of the canopy fabric first were retroflexed to I000 cycles

and then were tested at room temperature with a flowrater to determine if the

porosity exceeded an arbitrary limit of 0.02 cu ft/sq ft-min at a pressure of

0.5 in. of water. Flow values were as follows.
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Specimen

1

2

3

Average

Flow

(cu ft/sq ft-min)

0.01

0.05

0.01

0.02

Decelerator Packaging Demonstration

Introduction. - The inflatable decelerator must be packaged in a series

of concise, discrete steps to ensure that it will deploy in a systematic and

repeatable manner.

The envelope fabric must be prevented from rubbing excessively against

itself during unfolding in order to eliminate frictional heating, which possibly
could decrease fabric strength. In addition, it is desirable to provide for
erection of the ram-air inlets into the airstream for immediate transfer from

pressurization by self-inflation to ram-air pressurization. The solution to

both these requirements basically is a common one.

Approach. - To expose the inlets quickly, portions of surface area upon
which they are built must be deployed first, which locates these portions on

or near the top of the packaged configuration. In addition, an aspect of the

tucked-back canopy that tends to restrict its packaging (compared with a con-

ventional plain-back configuration) is the relatively small core radius of the

tucked portion. Thus, the portion of envelope fabric adjacent to the inner

attachment circle must be packed in cylindrical-type folds along the mount-

ing cylinder. This material was folded first to allow its logical deployment
last.

Figure 16 shows the basic gore longitudinal folds. The requirements

were satisfied by first folding the tucked gore vertically and by progressing
to horizontal folds from the rear surface toward the front attachment. In a

minor modification for benefiting egress, the initial tucked surface was folded

over the attachment point shoulder. In addition, pleats were made in the gore

width since fabric from a larger diameter was packaged at a smaller diameter,

thus resulting in excess material that must be systematically arranged.

Restraint system. - The final restraint, to retain the uninflated deceler-

ator in its packaged configuration, was made with a series of loops assembled

together to form a daisy chain hoop around the sleeve support. Figure 17

shows a planform view of the completed assembly. When an electrical initia-

tion signal is given, the redundant cutters activate to sever the chain retain-

ing cord. Once severed, it pulls out of loops No. 1, No. 2, and No. 16; loop
No. 2 pulls out of No. 3; and No. 16 out of No. 15. This order continues un-

til loops No. 8 and No. 10 pull out of loop No. 9. Thus, the chain restraint

is completely released. The loops pull through one another when forced by
the internal pressure from the self-inflation system.
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Figure 16 - Basic Envelope Folds

The loops that form the chain are equally spaced on meridians at 16

places around the envelope circumference. They are properly positioned

on the meridians so that, when the meridians are slightly tensioned from the

aeroshell attachment by drawing up the daisy chain hoop, the fabric envelope

serves as its own packing cover. When the envelope is fully inflated, the

loops are tight against the surface and cause only minor local disturbance
in the flow.

Validation. - Decelerator packaging was straightforward, and the method

was proved by successful package release in 0.018 sec during every test for

inflation-deployment. The internal pressure peaks developed during package

release were not deleterious to the fabric envelope.

Inflated Shape Inspection

Introduction. - To validate the designed and tailored shape, the inflated

shape was inspected by measuring the free rear surface of the decelerator,

inflated to steady-state pressure (Cpi = g), while the forward surface was
held to the required contour.

Preparation and inspection. - Major equipment required to perform the
inspection was a combination fixture used for both front contour restriction

and rear contour inspection. By sweeping the surface of revolution with the

isotensoid profile in wetted sand, the front contour was relatively simple to

duplicate. The isotensoid shape defined by coordinates in Appendix B, or
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more specifically the arbitrary station coordinates of Figure 18, was retained

long enough for inspection by using hardened foundry sand in a ruggedly con-

structed box (see Figure 19).

Both the test model and rear contour inspection template were mounted on

the axis of revolution, with the template offset one inch axially as the basis

for comparative measurements of gage extensions to determine profile vari-

ances of the rear surface {see Figure 20).

With two of the four inlets plugged, inflation was achieved from factory

air lines through the outer two inlets by manual valve control of one line to

maintain the steady-state pressure (Pi - Poo) at approximately 1.8 psig. The

envelope pressure was monitored on an oscillograph that was set up and cali-

brated to the model-mounted differential pressure transducer.

Inspection documentation. With the inflation pressure (Pi - Poo) regu-

lated between 1.8 and 1.9 psig, profile measurements of eight extension gages

at the x locations in the template were taken separately on four representative

meridians. Variances from the theoretical y value were recorded as shown

in Figure 21. The maximum variance of 0.2 in. occurred at only seven of

the 32 measurements. The lobing height approximated one inch.

Common variances of +1.5 in. were measured during a shape inflation

of only 0.2 psig; the applied inspection pressure of 1.8 psig reduced the vari-

ances to the minimums of Figure Zl.

Conclusion. - Some validity of the isotensoid theory was demonstrated

successfully by the close conformance of the inflated shape to the theoretical

shape. To achieve this, the established profile for the predicted consistent

differential pressure over the entire rear surface during free flight was

closely duplicated by inflation under static conditions in combination with the

simulated positioning of the front surface.

Good accuracy in fabricating 16 gores and 48 meridians to the tailored

shape was indicated from the measured profile variances. The resulting ac-

curacy of producing an operating size to the design size also was unprece-

dented; the actual length of profile periphery closely matched the design pro-

file as evidenced by both +0.2 in. and -0.2 in. maximum variances from
theoretical.

Deployment and Inflation Tests

Introduction. - The AID unit was successively inflation-deployed in the

environmental chamber at 20 psfa static pressure and at approximately 170

deg F, which was measured on the model by thermocouples. As heat is re-

quired for inflation by fluid vaporization, the test temperature of 170 deg F

was assumed for the chamber tests as being realistic of the fluid temperature
to be attained in the wind tunnel.

A series of four development tests were required to attain a desired level

of internal pressure. Appendix C served as background for the tests.
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Figure 19 - AID Inspection Fixture, Front Contour

J_j

Figure Z0 - AID Contour Inspection
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Test documentation. Data for each deployment was obtained from mo-

tion pictures and from oscillographic traces of firing current, inflation pres-

sure, and temperatures. As time correlation was provided by firing the

flash bulb simultaneously with the reservoir cutter (t = 0), comparison with

the high-speed pictures and data reduction of the traces from the developed

calibration rates were completed in the generated plots of temperature and

pressure in Figures 22 and 23.

Test No. I was the first of four tests in which the principal variable from

test to test was the amount of vaporizing fluid, which was used in increasing

amounts to raise the level of inflation pressure progressively. Selection of

2.2 oz of water was based on ideal heat conversion to a Cp limit of 2 {seei

Appendix C); however, a Cpi of only 0.3 was attained after full inflation as

evidenced by the inflation pressure (Pi - Poo) of 0.23 psi (see Figure 22).

The 3.3 oz of water-alcohol mixture for Test No. 2 also was based on

ideal heat conversion to a Cpi of 2. A Cpi of 0.7 was attained, which was a

somewhat greater efficiency than with using plain water. This pressure co-

efficient corresponds to the inflation pressure (Pi - Poo ) of 0.6 psi (see Fig-
ure 22). Figures 24 and 25 are typical of the decelerator setup of free de-

ployment and of the deployed decelerator at close to the maximum inflation

pressure. The distorted appearance in comparison with the design shape was

expected from deployment at static conditions.

By an approximate determination from the level of efficiency of Tests

No. l and 2, 12 oz of water-alcohol in a larger constrained tube reservoir

were selected for Test No. 3. This mixture resulted in fabric rupture of the

decelerator on straining beyond its isotensoid shape as it tended toward a

torus in the static environment. Data plots are shown in Figure 22.

For Test No. 4, the same fluid weight and the same size reservoir were

used except that the tube was compartmented in an attempt to limit the rate

of vaporization and peak pressure during package release. The principal

change, however, was for guiding and maintaining the deployed decelerator

in the approximate isotensoid shape by a modification to the A frame support

and by minor additions to the decelerator. The decelerator was modified by

adding a reinforcing sleeve at the tuckback and by adding four radial-restrict-

ing circumferential hoop tapes along the tuckback as shown in Figure 26.

The shape-controlling guide shown in Figure 27 consisted of two frame-

supported tubular hoops for contacting the tailored decelerator at selected

Stations 4 and 9 (Figure 18) on the front profile contour. All IZ stringers
also made contact at Station 7.

The excellent inflation shown in Figure 28 attained a Cp. of 1.3. This

value corresponded to the inflation pressure (Pi - Poo) of 1.0%8 indicated in the

data reduction of Figure 23, which was generated from the oscillographic
traces.
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Conclusion. - An examination of the temperature plots for T I and T 2 in
Figures 22 and Z3 finds no consistency in temperature changes among tests

or between thermocouples from which meaningful conclusions can be drawn,

except that thermocouples are needed at additional locations and more tests

are required for analysis.

The pressure plots of successful tests show consistency in package re-

lease at 0.018 sec, inflation to shape at 0.06 to 0.07 sec, and maximum in-

flation pressure at approximately 0.35 sec. A relatively high level of pres-

sure also is evident for at least one second before dissipation of the inflating

vapor.

From a review of the picture documentation and post-test examination of

the unit, no deleterious leakage was apparent, and integrity of the envelope
was ensured within the limits of test simulations.

From past experience, a Cp. of 1 was sufficient for free-flight operation

of 80-deg included-angle BALEU_Es. A plot of vaporizing fluid weight versus

internal pressure for the tests indicated the recommended requirement of

eight ounces of water-alcohol to attain the inflation-deployment Cpi of l (see
Figure 29).
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Figure Z5 = Test No. 2 Deployment
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Figure 28 - Test No. 4 Guided Deployment
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CONCLUSIONS AND RECOMMENDATIONS

Introduction

Scheduled inspection and test demonstrations of the model were used to

evaluate system design and fabrication of the AID concept for Mars entry.

Detailed conclusions, determined principally from the performed demonstra-

tions, and followon recommendations suggested for approach toward an ulti-

mate real-flight design are given below.

Conclusions

An attached inflatable decelerator was produced compatible with the

isotensoid theory. An isotensoid shape was computer-developed from the ex-

pected pressure distribution and in satisfaction of fixed boundary constraints

to suit the aeroshell hard-structure configuration. The resulting shape ap-

proached the design optimum of least weight. By using a contoured fixture

for front shape constraint, the tailored shape was validated statically, with

internal pressure providing the design pressure differential over the rear-
ward half.

The hardbody aeroshell was accurately constructed to support the decel-

erator on the wind-tunnel loading-measuring balance and was equipped to

serve as the operating vehicle for wind-tunnel test. Hard-structure clamp

attachments for the decelerator provided a degree of accuracy compatible

with the defined shape. Dependable operating components were installed in

the aeroshell structure for effecting deployment. Proved sensors also were

incorporated in the aeroshell for measuring the operating pressure and tem-

perature.

A highly responsive vapor inflation system for positive inlet deployment

was demonstrated in the Goodyear Aerospace vacuum chamber. The envelope

structure withstood a deployment inflating pressure equivalent to a Cpi of 1.3

when restricted to the design shape. Time constants of inflation-deployments

during the several chamber tests were 0.018 sec for package release, 0.07

sec for shape inflation, and 0.35 sec for maximum internal pressure.

The demonstrations of decelerator shape validation, envelope packaging

and release, and inflation-deployment operation served to qualify the two units

in preparation for the intended wind-tunnel testing to prove workability of the

AID concept.

Recommendations

Definitive studies of inlet sizing and location and of mechanical versus

vapor inflation deployments are required in the continuing development of

attached inflatable decelerators. Immediate followon efforts in the approach

to an optimum inflatable decelerator should include study and test to advance

inlet technology and efficiency.
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For any candidate system considered in these studies, an analytical

approach to the dynamics of inlet and envelope deployment might be applied

that will incorporate the elements of opening force and deployment restric-

tions. A packaging and deployment method compatible with an inlet design

should be developed with sufficient response to deploy positively into the flow

for ensuring full ram-air inflation of the decelerator volume.

Further refinements will be needed in the analysis and test of vapor in-

flations to optimize deployment designs by this method; better initial tempera-
ture control and more measurable temperature data during test are required
for validations.

The shape and design of attached decelerators for large flight models

must be optimized with governing considerations of structural stability, low

weight over drag, and inflation techniques for positive, uniform erection of
the envelope,
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APPENDIX A

DECELERATOR PARAMETERS AS FUNCTIONS OF THE

OUTER ATTACHMENT ANGLE

This appendix discusses some of the background work conducted to facili-

tate selection of the design profile shape. Figures 30 and 31 are based on the
results of the isotensoid computer solutions for attachment angles of _ = 19.5,

Z3.6, and 30 deg, which correspond to the respective profile shapes of Fig-

ures 3, 4, and 3Z. Figure 30 shows the drag coefficient and the weight pa-

rameter, which includes the fabric weight along with the meridian weight,
versus the attachment angle. The drag coefficient is a rather constant value

of C D = 1.1. Although the weight decreases with decreasing attachment angles,
the required number of lobes (n) and the theoretically required bias angle (y)

of the fabric as determined at the critical equatorial location become prohibi-

tive for angles less than about 20 deg.

These considerations were secondary in selecting the design shape since

the overriding requirement of meeting an agreed inner attachment constraint
of (x/R)i = 0.13 could be satisfied onlyby the profile shape corresponding to

the attachment angle of _ = 23.6 deg.

3O
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Figure 30 - Decelerator Weight Parameter and Drag Coefficient versus
Attachment Angle
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APPENDIX B

SHAPE DEVELOPMENT

EQUILIBRIUM EQUATIONS

For the isotensoid shape, it is assumed that fabric stresses and meridian

cable tensions are constant. With the burble fence attached at the equator,

there will be a discontinuity in stresses between the front and the back. The
relation between fabric stresses and meridian cable tensions can be obtained

by cutting the shape at the equator. Figure 33 shows the loading diagram.

At a point on the equator just behind the burble fence, the following
equilibrium equations are obtained.

, ,

-[!

n'r
r

Let

2_Rf
r
+nT --p_aZ(l -a z)

r

2f
r

F =

r pR

nT
r

k =

r 1=_ R 2

(P = Pi - Pr )

P

F +k = 1 - a" (42)
r r
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At a point just in front of the burble fence, the force due to the burble
fence enters.

I

aR

IT"nTf

2_'RSf + nTf = l:nrR2(1 - c_Z) + D b

Let

2ff

Ff=

nTf

kf = R2p_

D b
_=

ptr R 2

Ff+kf= 1 2 +_ (43)

Ff + kf = y(F r + kr) (44)

where

{ ----"

1 2+p= 1+ _

1-C_ 2 1-a 2

It is assumed that the burble fence is attached so that

Ff = yF r, kf = yk r (45)
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GOVERNING EQUATION FOR REAR HALF

[$(i - _ - kr) + krlsin 00r = O_ - _2 (46)

now

d_ = tan a)r

or

d_/ = tan0J d_ (47)
r

This equation can be integrated numerically by solving Equation (46) for

tan 0)r. When tan a)r becomes large, Equation (46) can be solved for _in terms
of a_ as follows:

r

= g(COr)

d_ = g'(COr)dCo r

Therefore,

dG = tan Wrg'(Wr)dW r

With this equation, the integration can be carried out with respect to 09 r.

64



GOVERNING EOUATION FOR FRONT HALT

The front half is divided into N intervals of constant pressure. The equa-
tion in the i th interval is then:

[4_(1- _2 _ kf + _) + kf[sin Wf + (_Z __2) _ Hi +

p'fi _2 - pfi _2 + p'r(1 _ : o (48)

where

Pfi = front pressure over ith increment

Pfi

P fi -7

Pr
! -

Pr -p-

H° "

N

E p,fj(_2j +i

j =1

Again,

d_= tan _f
(49)

or

d_ = tan wfd_

This equatxon can be integrated by solving Equation (48) for tan ¢0f, or

Equation (48) can be solved for _ in terms of oaf and the integration carried

out with respect to oaf.

COMPUTER PROGRAM

The computer program first reads in the front pressure distribution for

_, which corresponds to oaf at the edge of the aeroshell. It then prescribes a

value of aand using Equation (48) for the first increment calculates kf. If kf

is negative, it takes the next value of _ and so on until a positive kf is obtained.

It then calculates Ff from Equation (43). If Ff is negative, it takes the next

value of k and so on until positive values for both kf and Ff are obtained. Equa-

tion (49) then is integrated numerically (using the trapezoidal rule). For
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three-fourths of the distance from _to 1, the integration is carried out with

respect to_. From that point, the integration is carried out with respect to

¢0f. This integration gives the front shape, k r and F r then are calculated
from Equation (45}, and Equation (47) is integrated to obtain the back
shape. For the back shape, the integration is carried out with respect to r
over the entire range.

Computer outputs in dimensionless values, printed out as corresponding
to the developed isotensoid shape for the attachment angle (_), are as follows:

kf

Ff

meridian tension coefficient, front

circumferential membrane stress coeffi-

cient, front

k
r

F
r

meridian tension coefficient, rear

circumferential membrane stress coeffi-

cient, rear

(y/R}
e

(y/R)
max

Vr_=a

(x/R) mi n

C D

coordinate at the equator, {x/R)max

maximum coordinate y/R

coordinate x/R at (y/R)max

minimum coordinate x/R

drag coefficient for the system based on
x/R = 1.1

_m/R meridian length coefficient

As/R 2 surface area of revolution coefficient

A profile shape can be machine plotted or its defining points printed out.
An example of a computer printout is the 344 points of cartesian coordinates

representing the isotensoid plot for _ = 23.6 deg in Table XIII.
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TABLE Xlll - ISOTENSOID COORDINATES, 344 POINTS

(_ = 23.6 DEG)

x/R

3. 8000-01

3. 8620-01 a

3. 9240-01

3. 9860 -01

4. 0480-01

4. llO0-Ol

4. 1720-01

4. 2340 -0 l

4.2 960 -01

4. 3580-01

4. 4200-01

4. 4820-01

4. 5440-01

4. 6060-01

4. 6680-01

4.7300-01

4. 7920-01

4. 8540-01

4. 9160-01

4. 9780-0 l

5. 0400-01

5. 1020-Ol

5. 1640-01

5.2260-01

5.2880-01

5. 3500-01

5. 4120 -0 l

5. 4740 -01

5. 5360-01

5. 5980-01

5. 6600-01

5. 7220-01

5. 7840-01

5. 8460-01

5. 9080-01

5. 9700-0 l

6.0320-01

6. 0940-01

6. 1560-01

6.2180-01

6.2800-01

6. 3420 -01

y/R

0.0

2.7126-03 a

5. 4388-03

8. 1788-03

1. 0933-02

1. 3702-02

i. 6486-02

i. 9284-02

2.2099-02

Z. 4929-02

2. 7776-02

3. 0639-02

3. 3519-02

3. 6417-02

3. 9333-02

4.2266-02

4. 5219-02

4.8191-02

5. i182 -O2

5. 4194-02

5. 7226-02

6. 0280-02

6. 3356-02

6. 6453-02

6. 9574-02

7.2718-02

7. 5887-02

7. 9080-02

8 2298-02

8 5542-02

8 8814-02

9 2112-02

9 5440-02

9 8796-02

l 0218-01

I 0560-01

1 0905-01

i 1253-01

l 1605-01

1 1960-01

1 2318-01

l 2681-01

x/R

6. 4040-01

6. 4660-01

6. 5280-01

6. 5900-01
6. 6520-01

6. 7140-01

6. 7760-01

6. 8380-01

6. 900O -01

6 9620-01

7 0240-01

7 0860-01

7 1480-01

7 2100-Of

7 2720-01

7. 3340-01

7. 3960-01

7. 4580-01

7. 5200-01

7. 5820-01

7. 6440-01

7. 7060-01

7. 7680-01

7. 8300 -01

7. 8920 -01

7. 9540-01

8.0160-01

8.0780-01

8. 1400-01

8.2020-01

8. 2640-01

8. 3260-01

8. 388O -0 l

8. 4500-01

8. 5120-01

8. 5740-01

8. 6360-01

8.7600-01

8. 8220-01

8. 8532 -01

8. 8840 -01

8. 9152-01

y/R

i. 3047-01

i. 3417-01

I. 3791-01

I. 4170-01
i. 4552-01

l 4939-01

l 5331-01

I 5727-01

1 6129-01

l 6535-01

1 6947-01

l 7364-01

l 7787-01

l 8216-01

l 865]-01

l 9092-01

1 9539-01

l 9994-01

2 0455-01

2 0924-01

2 1401-O1

2 1886-01

2 2379-01

2 2881-01

2 3392-01

2 3912-01

2 4443-01

2 4984-01

2 5536-01

Z 6100-O1

Z 6676-01

2 7265-01

2 7868-01

2 8486-01

2 9120-01

2 9770-01

3 0439-01

3 1835-01

3 2566-01

3 2943-01

3 3321-01

3 3711-01

aExample s are coordinate values O. 38620 and O. 00271.
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TABLE Xlll - ISOTENSOID COORDINATES, 344 POINTS

(_ = 23.6 DEG)(Continued)

x/R

8. 9460-01

8. 9772-01

9.0080-01

9. 0392-01

9. 0700 =01

9. 1013-01

9. 1320-01

9. 1633-01

9. 1940 -0 l

9.2253-01

9.2560-01

9.2873-01

9. 3180-01

9. 3494-01

9. 3800-01

9.4114=01

9. 4420-01

9. 4735=01

9. 5040-01

9. 5252-01

9. 5458-01

9. 566O -01

9. 5872 -0 l

9.6079-01

9. 6280-01

9. 6493-01

9. 6700-01

9. 6900-01

9.7115-01

9. 7322-01

9. 7520 -01

9. 7737-01

9. 7944-01

9. 8140-01

9.8307-01

9. 8466-01

9. 8617-01

9. 8760=01

9.89O 1 -01

9. 9034-01

9. 9158-01

9. 9273-01

9. 9380-01

9. 9498 -0 l

9. 9696-01

y/R

3 4103-01

3 4507-01

3 4913-01

3 5334-01

3 5756-01

3 6194-01

3. 6634-01

3, 7092-01

3. 7552-01

3. 8033-01

3. 8515-01

3. 9021-01

3. 9530-01

4. 0065-01

4. 0604-01

4. 1174-01

4. 1748-01

4.2360=01

4.2975-01

4. 3417-01

4. 3860-01

4. 4304-01

4. 4787-01

4. 5271-01

4. 5757-01

4. 6290-01

4. 6826-01

4. 7363-01

4. 7963-01

4. 8565-01

4. 9169-01

4. 9862 -0 l

5.0557-01

5. 1253-01

5. 1879-01

5.2506-01

5. 3135-01

5. 3764-01

5. 4427-01

5. 5091-01

5. 5756=01

5. 6422=01

5, 7089-01

5. 7899-01

5. 9522-01

x/R

9. 9777-01

9. 9845-01

9. 9901-01

9. 9944-01

9. 9975-01

9. 9994-01

1. 0000-00

9. 9997-01

9. 9986-01

9. 9969-01

9. 9945 -01

9. 9914-01

9. 9877-01

9. 9832-01

9. 9781-01

9. 9723-01

9. 9658-01

9, 9586-01

9. 9507-01

9. 9422 -0 l

9. 9330=01

9. 9231-01

9. 9125-01

9. 9012-01

9. 8893-01

9. 8767-01

9, 8634=01

9. 8495-01

9. 8349-01

9.8196=01

9. 8036-01

9. 7870=01

9. 7697-01

9. 7518-01

9. 7332-01

9.7139-01

9. 6940-01

9. 6734-01

9. 6522-01

9. 6303-01

9. 6078-01

9. 5846=01

9. 5608-01

9. 5363-01

9.5112-01

y/R

6.0335-01

6. i149-01

6. 1963-01

6.2777-01

6. 3592-01

6. 4407-01

6. 5223-01

6.5659-01

6.6095-01

6, 6531-01

6. 6966-01

6. 7402-01

6. 7837-0 l

6. 8271-01

6. 8705-01

6. 9138-01

6. 9570-01

7, 0002-01

7. 0432-01

7. 0861-01

7. 1290-01

7. 1717-01

7. 2143-01

7.2567-01

7 2990-01

7 3412-01

7 3831-01

7 4249-01

7 4666-01

7 5080-01

7 5492- 01

7. 5903-01

7.6311-01

7.6717-01

7. 7120-01

7. 7521-01

7. 7920-01

7. 8316-01

7 8710-01

7 9100-01

7 9488-01

7 9873-01

8 0255-01

8 0634-01

8 I009-01
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TABLE XIII - ISOTENSOID COORDINATES, 344 POINTS

(_ = 23.6 DEG)(Continued)

x/R y/R x/R

9. 4855-01

9. 4591-01

9. 4321 -01

9. 4045-01

9. 3763-01

9. 3474-01

9. 3179-01

9.2878-01

9.2571-01

9.2257-01

9. 1938-01

9. 161Z-Of

9. 1281-Of

9. 0943-01

9.0600-01

9. 0251 -Of

8. 9895-01

8. 9534-01

8 9167-01

8 8795-01

8 8416-01

8 8032-01

8 7643-01

8 7247-01

8 6846-01

8 6440-01

8 6028-01

8 5611-01

8 5188-01

8 4760-01

8 4326-01

8. 3887 -0 l

8. 3443-01

8.2994-01

8.2539-01

8. 2080-01

8. 1615-01

8. 1146-01

8. 0671-O1

8. 0192-01

7. 9707-01

7. 9218-01

7. 8724-01

7. 8225-01

7. 7722-01

8. 1381-01

8. 1750-01

8.2116-01

8.2478-01

8. 2863-01

8. 3191-Of

8. 3542-01

8. 3889-01

8. 4232-01

8. 4571-Ol

8. 4905-01

8. 5236-01

8. 5562-01

8. 5884-01

8. 6202-01

8. 6515-01

8. 6823-01

8. 7126-01

8. 7425-01

8.7719-01

8. 8008-01

8 8291-01

8 8570-01

8 8843-01

8 9111-Of

8 9373-01

8 9630o01

8 9881-01

9 0127-01

9 0367-01

9 0601-01

9 0829-01

9 1950-01

9 1266-01

9 1476-01

9 1679-01

9 1876-01

9. 2066-01

9. 2249-01

9. 2426-01

9. 2596-01

9. 2760-01

9.2916-01

9. 3065-01

9. 3207-01

7. 7214-01

7. 6701-01

7. 6184-01

7. 5663-01

7. 5137-01

7. 4606-01

7. 4072-01

7 3533-01

7 2990-01

7 2442-01

7 1891-01

7 1335-01

7 0776-01

7 0213-01

6. 9646-01

6. 9075-01

6. 8500-01

6. 7922-01

6. 7340-01

6. 6754-01

6. 6165-01

6.5573-01

6. 4977-01

6. 4378-01

6. 3775-01

6. 3170-01

6 2561-01

6 1949-01

6 1334-01

6 0717-01

6 0096-01

5 9473-01

5 8847-01

5 8219-01

5 7588-01

5 6954-O l

5 6318-01

5 5680-01

5 5039-01

5. 4397-01

5. 3752 -0 1

5. 3105-01

5. 2457-01

5. 1806-01

5. 1154-01

9. 3341-01

9. 3469-01

9. 3589-01

9. 3701-01

9 3806-01

9 3902-01

9 3991-01

9 4072-01

9 4145-0 l

9 4210-01

9 4267-01

9. 4315-01

9. 4354-01

9. 4385-01

9. 4407-01

9. 442 1 -0 l

9. 4425-01

9. 4421-01

9. 4407-01

9. 4384-01

9. 4352-01

9 4310-01

9 4258-01

9 4197-01

9 4125-01

9 4044-0 l

9 3952-01

9 3851-01

9 3738-01

9 3615-01

9 3482-01

9. 3337-01

9. 3182-01

9. 3015-01

9.2837-01

9. 2648-01

9. 2447-01

9. 2234-01

9. 2009-01

9. 1772-01

9. 1522-01

9. 1260-01
9. 0985-01

9. 0698-01

9. 0397-01
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TABLE X-ill - ISOTENSOID COORDINATES, 344 POINTS

(_ = 23.6 DEG)(Continued)

x/R y/R x/R y/R

5.0500-01

4. 9844-01

4.9187-01

4. 8529-01

4. 7869-01

4. 7208-01

4. 6546-01

4. 5883-01

4. 5220-01

4. 4555-01

4. 3890-01

4. 3224-01

4.2557-01

4. 1891-01

4. 1224-01

4. 0557-01

3. 9890 -01

3. 9224-01

3. 8557-01

3. 7892-01

3. 7226-01

3. 6562 -01

3. 5899-01

3. 5237-01

3. 4576-01

3.3916-01

3. 3259-01

3.2603-01

3. 1949-01

3. 1298-01

3.0650-01

3. 0004-01

2. 9361-01

2. 8722-01

2. 8087-01

Z. 7455-01

Z. 6828-01

2. 6206-01

2. 5589-01

9.0083-01

8. 9755-01

8. 9414-01

8. 9059-01

8.8689-01

8. 8305-01

8. 7907-01

8. 7493-01

8. 7065-01

8. 6621 -01

8.6161-01

8. 5685-01

8. 5193-01

8. 4684-01

8. 4158-01

8. 3615-01

8.3055-01

8. 2476-01

8. 1879-01

8. 1264-01

8. 0629-01

7. 9975-01

7. 9301-01

7. 8607-01

7. 7892-01

7.7156-01

7. 6398-01

7. 5618-01

7. 4815-01

7. 3988-01

7. 3139-01

7. 2264-01

2. 4978-O 1

2. 4372-01

2. 3773-01

2. 3181-01

2. 2596-01

2.2019-01

2. 1451-01

2. 0892-01

2. 0343-01

1. 9805-01

I. 9278-01

I. 8763-01

i. 8261-Of

i. 7774-01

I. 7301-Ol

I. 6844-01

i. 6404-01

I. 5982-01

I. 5580-01

I. 5198-01

1. 4838-01

i. 4500 -01

1.4187-01

I. 3899-01

i. 3637-01

I. 3403-01

I. 3198-01

I. 3023-01

1.2878-01

1.2764-01

I. 2683-01

1.2634-01

.1365-01

.0440-01

.9489-01

.8511-01

.7506-01

.6472-01

.5410-01

1.2617-01

1.2634-01

1.2683-01

I. 2764-01

I. 2878-01

I. 3023-01

1.3198-01

6.4318-01

6.3195-01

6.2042-01

6.0856-01

5.9638-01

5.8387-01

5. 7102-01

5. 5782-01

5. 4426-01

5.3034-01

5.1606-01

5.0140-01

4.8636-01

4.7093-01

4.5512-01

4.3892-01

4.2233-01

4.0536-01

3.8799-01

3.7025-01

3.5213-01

3.3365-01

3.1482-01

2.9566-01

2.7619-01

2.5643-01

2.3640-01

2.1614-01

1.9569-01

1.7507-01

1.5433-01

1.3350-01

1.1263-01

9.1757-02

7.0929-O2

5.0185-02

2.9566-02

9.1093-03

-i. I148-02
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APPENDIX C

INFLATION ANAL YSIS

It was intended to inflate the attached decelerator upon deployment with a

liquid that vaporizes upon being exposed to the low static pressure of the tun-

nel. Once the vapor-induced inflation takes place, the ram-air inlets on the

decelerator surface are exposed and fill out the enclosed volume completely

with ram air. The purpose of this analysis is to estimate the amount of liquid
necessary to inflate the envelope initially to full volume using the vaporization
technique of inflation.

The decelerator canopy is packaged on the back side of the aeroshell with

the liquid packaged within the fabric envelope. For the intended test, the

model is sting-mounted in the AEDC (PWT) 16S tunnel. A two-hour startup

time is required to reach test conditions of Moo = 3 and a dynamic pressure

of 120 psf. Figure 34 shows a schematic of this installation. During this

period, the model is exposed to a stagnation temperature of 180 deg F. Thus,
it is anticipated that the model and onboard accessories also approach this

temperature over the two-hour time exposure. The tunnel static pressure

during this same time period is reduced to about 20 psf. Therefore, as the

time of deployment approaches, the model temperature approaches 180 deg F

when the static pressure reaches Z0 psf. However, the liquid packaged in a
sealed container at normal ambient pressure (14.7 psi), not only is at an

J
J

q,:,o = 120 PSF

T = 180 OEG F
t

L_

FLOW

I

AEROSHELL

ATTACHED

DECELERATOR

P_,o = 20 PSF

TUNNEL WALL

Figure 34 - Wind-Tunnel Setup
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elevated temperature at this time but also is at an elevated pressure com-

pared with the tunnel environment. Assuming water is used for inflation,

the liquid remains in its normal state, since the pressure is 14.7 psi and

the temperature is 180 deg F.

The decelerator volume was evaluated to be 26 cu ft when fully inflated.

It was proposed that an internal pressure coefficient of 2 is required for the

wind-tunnel test conditions. The internal decelerator pressure was calcu-

lated from the pressure coefficient:

Pi - Poo
c = (5o)

Pi qco

where

qoo = 1g0 psf (dynamic pressure)

C = Z (internal pressure coefficient)
Pi

Pco = ZO psf (test section static pressure)

Then

Pi = Cpiqoo + Poo = 260 psf

The equation of state was now applied to determine the weight of water

required, which upon vaporization yields the required internal pressure.

WRT.
1

Pi - v

where

W weight of water required (lb)

R water vapor gas constant (85.81 ft-lb/lb-deg R)

W.

1 internal equilibrium temperature (deg R)

V decelerator volume (cu ft)

The internal temperature of the water vapor required in Equation (51) is

the equilibrium temperature the vapor reaches once all the liquid is vaporized.
This statement assumes that ideally complete vaporization can be realized

clue to the gross amount of heat available in the structural components. This

temperature can be obtained from water vapor-pressure data such as shown

in Figure 35. The internal pressure of the decelerator was proposed to be
Z60 psf (0.123 atm). At this pressure, the equilibrium temperature is 120

deg F. Solving Equation (5 1) for the weight of water required yielded

7Z
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/
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I
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/

I

Z

/
J

1.80Z

1.50Z

--WATER

/

OF WATER

OF METHYL ALCOHOL

_-METHYL ALCOHOL

0,3 0.4 0.5 0.6 0,7 0,8 0.9 1 .0

Figure 35 - Vapor Pressure Data

Pi V
W =

RT.
1

= Z60(26)
86(580)

= 0. 136 lb

The heat required to vaporize this amount of water is estimated by the
following relationship:

= Wh (52)Qv v

where

Q
v

heat required for vaporization (Btu)

h
v

heat of vaporization (Btu/lb)

The heat of vaporization is obtained from steam tables and at a pressure of

Z0 psf (0.139 psi) is equal to I070 Btu/ib. Therefore, the heat required to

vaporize the water is
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Qv = 0.136(1070) = 145 Btu

A portion of this heat becomes available from the sensible heat decrease

of the liquid as soon as its container is fractured and the fluid is exposed to

the static pressure of the tunnel. This amount of heat is calculated from the

following relationship:

where

QS =

C =

Therefore,

= WC(T aO s - Tb)

sensible heat realized from water (Btu)

specific heat of water (1 Btu/lb-deg F)

T b = 50 deg F vapor pressure temperature at
20 psf

T = 180 deg F initial temperature
a

Qs = (0.136)1(180- 50) = 18 Btu

Since this amount of heat is not sufficient to vaporize all the liquid, the re-

mainder of the heat required must be obtained from the sensible heat con-
tained in the fabric and in the aeroshell. The additional heat required is

Q= Q -Q
V S

= 145 - 18 = 127 Btu

Assuming the fabric is at a temperature of 180 deg F and the specific
heat of Nomex fabric is 0.Z9 Btu/lb-deg F, then for a fabric weight of four

pounds.

Q = WfCf(T a - Tb)

= (4)0.29(180- iZ0) = 70 Btu

(53)

Since this amount of energy is insufficient to vaporize the water, the re-

mainder of the energy must be extracted from the sensible heat energy con-

tained in the aeroshell, which is more than sufficient to vaporize the water.

The use of other liquids also was investigated; these results are summa-

rized in Table XIV. The vapor pressure characteristics of these liquids also

are shown in Figure 35.
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TABLE XIV - LIQUID VAPORIZATION CHARACTERISTICS

Vaporizing
fluid

Water

Methyl alcohol

Mixtu r e

Weight

required

(oz)

Z.2

4.3

i. 8 (water)

I. 5 (methyl alcohol)

Volume

(cu in. )

3.8

9.3

6.4

Heat

required

(Btu)

145

130

165

Internal

pressure
(psf)

260

260

260

A comparison of these results showed that, while less heat is required

to vaporize the methyl alcohol, a larger storage space is required to store

it. In addition, the methyl alcohol vaporizes during the tunnel pull-down op-

eration, thus requiring a more impermeable packaging container. A mix-

ture of water and alcohol, which has been used successfully in Goodyear

Aerospace decelerator programs, also can be utilized for the vaporization

technique, although the largest amount of heat is required to vaporize this

liquid. The simplest overall design problems, however, apparently are en-
countered with water.

It was recommended, therefore, that water be used initially for this test

operation, but subsequent testing in this application found a more effec-
tive mixture.

(The reverse is blank.) 75
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APPENDIX D

DRAWINGS

The working drawings for the attached inflatable decelerator system were

generated by Goodyear Aerospace and are given below (see Figures 36 through
53).

•

Drawing 610A000-001: Model Assembly, 60-Inch Dp,
Attached Inflatable Decelerator (four sheets), 18 August
1967.

Ze Drawing 610A000-002: Decelerator Assembly, 60-Inch

Dp (six sheets), 18 August 1967.

. Drawing 610A000-101: Aeroshell, Attached Inflatable

Decelerator, 18 August 1967.

, Drawing 610A000-102: Support Assembly, Attached In-

flatable Decelerator, 18 August 1967.

, Drawing 610A000-103: Model Details, Attached Inflat-

able Decelerator, 18 August 1967.

6. Drawing 610A000-I04: Clamp Assembly, Attached In-

flatable Decelerator, 18 August 1967.

o Drawing 610A000-105: Inlet Assembly, 4-Inch Diameter,

18 August 1967.

8. Drawing 610A000-I06: Sleeve, Inlet, 4-Inch Diameter,

18 August 1967.

9. Drawing 610A000-I07: Base, Inlet, 18 August 1967.

I0. Drawing 530A005-II0: Ring, Ballute Inlet, 15 April
1966.

(The reverse is blank. ) 77
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I1

NASA CR-66613

National Aeronautics and Space Administration

DEVELOPMENT OF ATTACHED INFLATABLE

DECELERATORS FOR SUPERSONIC APPLICATION.

Barton, R. Reed, 2Z May 1968, I15 pp. Contract No.

NASI-7359, contractor report number GER°I3680

An attached inflatable decelerator is considered for

augmenting needed drag of a capsule during Mars en-

try. The inflatable afterbody, configured as a varia-

tion from a tucked-back Ballute, is packaged within a

120-deg conical aeroshell for deployment at Mach 3.0

and at a dynamic pressure of 125 psf. Outer attach-

ment of the expandable afterbody is made to the hard-

body aeroshell profile, and inner attachment is made

to a tubular support for wind-tunnel mounting.

The model was designed, fabricated, and develop-

ment tested and is recommended for wind-tunnel

testmg to prove workability of the concept.

I. Barton, R. Reed

II. NASA CR-66613
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